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Abstract-The constructal theory of the origin of geometrical form in natural flow systems is used to 
predict the formation of crack patterns in solids subjected to volumetric cooling by convection. The 
approach is purely theoretical (deterministic), because it starts from the principle of geometric minimization 
of resistance to flow, and leads to the existence of optimal distances between successive cracks and, 
consequently, optimal crack widths. The analytical part of the paper is based on the method of intersecting 
the asymptotes (many cracks vs. few cracks), and anticipates several natural features that had not been 
explained previously : cracks are denser when the convective cooling effect is more intense and/or the initial 
departure from equilibrium is greater, and the loops are close to round (or square) in two-dimensional 
lattices of cracks. These trends are further illustrated by using a one-dimensional numerical conduction 
model with equidistant parallel-plate cooling channels. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. OBJECTIVE 

It was shown recently [l, 21 that by minimizing geo- 
metrically the thermal resistance between one point 
and a finite-size volume (an infinity of points) it is 
possible to predict a most common natural structure 
that previously was considered nondeterministic : the 
tree network. Tree network patterns abound in nature, 
in both animate and inanimate systems (e.g., botanical 
trees, river basins, lungs, vascularized tissues, light- 
ning, neural dendrites, dendritic crystals). The key to 
solving this famous problem was the optimization of 
the shape of each finite-size element of the flow 
volume, such that the flow resistance of the element is 
minimal. The optimal structure of the flow was then 
constructed by putting together the shape-optimized 
building blocks. The structure was determined in time, 
by proceeding from small to large. Shapelessness 
(diffusion) came first, and geometrical form (chan- 
nels) came later. This characteristic is worth repeat- 
ing: disorganized flow (diffusion) came first and 
organized flow (channels) came later. This geometric 
optimization method was named ‘constructal theory’. 

The deterministic power of constructal theory is an 
invitation to new theoretical work on natural flow 
structures that have evaded determinism in the past. 
This paper is about one such flow : the natural for- 
mation of a pattern of cracks in a shrinking solid (Fig. 
1). The constructal approach employed in this paper 
is based on the view that an occurring flow-its geo- 
metric structure--is the end result of a process of 
internal geometric optimization. The objective of the 
optimization process is to construct an assembly of 
paths of minimal resistance for the current (heat, fluid, 

mass) that is forced to flow through the system. We 
show that macroscopic shape and structure can be 
predicted based on the geometric minimization of flow 
resistance. In other words, we show that the con- 
structal approach is deterministic with respect to the 
very existence of geometrical form. 

The present extension of constructal theory is very 
timely because a large segment of the physics and 
biology communities works on identifying the physics 
principle that controls geometric form in natural 
systems, both animate and inanimate. This challenge 
was summarized by Kadanoff [3] in his critique of 
the proliferation of computer simulations (e.g., fractal 
algorithms) of naturally occurring structures. Kad- 
anoff wrote that “further progress depends upon 
establishing a more substantial theoretical base in 
which geometrical form is deduced from the mech- 
anisms that produce it”. The constructal (geometric 
optimization) principle invoked in this paper answers 
this challenge, and shows that geometrical form can 
indeed by deduced from a single principle. 

2. ANALYSIS 

The formation of cracks in solids in an old and busy 
field that so far has been dug mainly by materials 
scientists, physicists and chemists. Many important 
advances have been made (e.g. refs. [4-6]), and these 
are backed by a voluminous literature. The challenge 
that persists is to explain the origin of such patterns, 
i.e., to predict their very existence. During the past 
decade it has become fashionable to describe cracking 
patterns in terms of fractal images. This tool is descrip- 
tive, not predictive. 
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NOMENCLATURE 

dimensionless group, equation (23) 
solid specific heat 
fluid specific heat at constant pressure 
crack size 

Greek symbols 

initial crack size 
solid thermal conductivity 
fluid thermal conductivity 
crack dimension in the direction of 
flow 
mass flow rate per unit length 
heat transfer rate per unit length 
half distance between adjacent cracks 
dimensionless group, equation (23) 
time 
cooldown time 
temperature 
fluid inlet temperature 

solid thermal diffusivity 
fluid thermal diffusivity 
coefficient of thermal contraction 
dimensionless crack size 
dimensionless initial crack size 
pressure difference 
temperature difference, TH - T, 
dimensionless temperature 
viscosity 
kinematic viscosity 
dimensionless coordinate 
solid density 
fluid density 
dimensionless time 
dimensionless cooldown time. 

solid initial temperature 
temperature of the cooled side 
mean velocity 
free stream velocity 
coordinate. 

Subscripts 
min minimal 

opt optimal 
R the plane x = R 
0 the plane x = 0. 

Fig. 1. Pattern of cracks on the ground. 
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Let us think freely about the most common example 
of patterned cracks, which is illustrated in Fig. 1. Wet 
soil exposed to the sun and the wind becomes drier, 
shrinks superficially, and develops a network of 
cracks. The loop in the network has a characteristic 
length scale. The loop is round, more like a hexagon 
or a square, not slender. The loop is smaller when the 
wind blows harder, that is when the drying rate is 
higher. A simple theory is needed for anticipating 
these extremely simple geometric characteristics. 

These unexplained features of macroscopic cracks 
are major hints that their pattern is another natural 
occurrence of access optimization : the maximization 
of the mass transfer rate from the system (wet soil) to 
the ambient, or the minimization of the overall drying 
time. In view of the analogy between mass transfer 
and heat transfer, we can explore this theoretical route 
by considering the thermal analog of the system of 
Fig. 1. The simple:st thermal analog is sketched in Fig. 
2. 

The existence of an optimal crack spacing for fastest 
cooling can be demonstrated based on ‘the inter- 
section of asymptotes method’, which was developed 
in several geometric optimizations of the spacings of 
electronic packages (e.g., refs. [7-91). Consider the 
one-dimensional conducting solid shown in Fig. 2. 
This is a very simple, highly idealized model : the clos- 
est connection between it and the example of Fig. 1 
would be to imagine the view in a vertical cut through 
the soil, and to assume that the cracks continue down- 
ward to a depth I,. 

The cracks are spaced uniformly, however, the spac- 
ing scale R is arbitrary at this point. In the plane 

. 
1 

perpendicular to the flow direction ti’, the cracks 
appear as parallel lines with a uniform spacing of size 
2R. The crack width D increases in time, as each solid 
piece (R) shrinks. The cooling effect is provided by a 
single-phase fluid driven by the pressure difference 
AP, which is maintained across the solid layer of thick- 
ness L. 

The imposed pressure difference AP is an essential 
aspect of the crack spacing selection problem. For 
example, in the cooling of a hot dry rock deposit [lo] 
a pressure difference is maintained between the water 
injected into the well and the pressure of the stream 
returned to ground level. In the air cooling of a vertical 
crack in the surface of a muddy terrain, the scale of 
BP is set at ( 1/2)prU~, where pr and U, are the density 
and free-stream velocity of the external air flow 
(wind). 

To examine the effect of the crack spacing R on the 
time needed for cooling the solid, we consider the 
following two extremes. 

2.1. Many cracks 
When the number of cracks per unit length is large, 

the spacing R is small and so is the eventual shrinkage 
that is experienced by each R element. This means 
that in the limit R + 0 we can expect D --* 0. In this 
limit, the flow through each D-thin crack is laminar 
(Hagen-Poiseuille), such that the crack mass flow rate 
is given by 

D’AP 

,_,‘ 

‘,i ” 

tit codant TL, pp cp, kf 
Fig. 2. Solid layer with equidistant cracks (D, L) cooled by single-phase convection. 



In the same limit, R is small enough so that the solid coefficient of linear thermal contraction of the solid. 
conduction is described by the lumped thermal capaci- In the opposite limit (R -+ co), the cooling time is 
tance model [1 11. The solid piece R is characterized proportional to R’. Put together, these two pro- 
by a single temperature T, which decreases in time portionalities suggest that the cooling time possesses 
from the initial level TH to the inlet temperature of the a sharp (important) minimum with respect to R or 
fluid, TL. This cooling effect is governed by the energy the crack density. Intersecting equations (5) and (6) 
balance we find that the optimal crack distance (R,,,) for fast- 

pcRLg = -qJ 

est cooling is of the order of 

lr4 
R 

k c+vL2 
opt - - (8) 

where p and c are the density and specific heat of the 1 k, u$(bAT)3 

solid. The cooling effect (q’) provided by the flow 
through the crack is represented well by This result is promising for two fundamental 

reasons, in addition to the practical aspect of knowing 
q’ = fi’c,(T- TJ (3) how to extract heat from a solid in the fastest way 

where cp is the specific heat of the coolant. By writing 
possible. One reason is that the optimal crack distance 

equation (3) we are recognizing that in the D + 0 limit 
decreases as the external pressure (or flow) is inten- 

the fluid becomes as warm as the surrounding solid 
sified. This effect is in accord with observations that 

before it reaches the end of the crack. If we combine 
mud cracks become denser when the wind speed 

equations (2) and (3) we obtain the order of mag- 
increases [4]. Equation (8), in association with the 

nitude statement 
constructal principle that natural cracks occur such 
that the cooling speed is maximized, is the first theor- 

AT 
pcRLt - riz’c,AT (4) 

etical prediction of the effect of wind speed on crack 
density. 

The second reason why equation (8) is important 
where AT is the scale of the instantaneous solid excess fundamentally is that it predicts a higher density of 
temperature T- TL. Finally, by using the &’ scale cracks (a smaller R,,,) as the solid excess temperature 
provided by equation (l), we conclude that the cooling AT increases. This trend too is in agreement with the 
time scale is large volume of observations recorded in the materials 

science literature [4-61. Again, equation (8) and the 
time minimization theory presented in this section 
predict the dependence of the cooldown time on the 
initial temperature difference. 

2.2. Few cracks 
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In the opposite limit, R is large and the crack width 
D is potentially very large-in proportion to R. The 3. NUMERICAL FORMULATION 
fluid present at one time in the crack is mainly iso- 
thermal at the inlet temperature TL. The aspect that The theoretical trends discovered in the preceding 

is more relevant to the present time-scale analysis is section can be described in more concrete terms by 

that when R is sufficiently large the cooling of each simulating numerically the heat transfer and solid con- 

solid side of the crack is ruled by one-dimensional traction processes. The numerical formulation is 

thermal diffusion into a semiinfinite medium [ 111. The based on the unidirectional conduction and coor- 

cooling time is the same as the time of thermal dinate system model shown in Fig. 2. The crack open- 

diffusion (penetration) over the distance R, ing increases in time, D(t), however, it is much smaller 
than the solid dimension R, such that R can be 

t-G (R-co) 
regarded as being practically time-independent. 
Because of symmetry, it is sufficient to calculate the 
temperature distribution T(x, t) in the solid piece situ- 

where c( = k/(pc), and k is the thermal conductivity of ated between x = 0 and x = R. The energy equation 
the solid. 

lL?T 8T --=~ 
2.3. The intersection of the asymptotes M at ax* (9) 

Figure 3 summarizes the scaling trends uncovered 
for R -+ 0 and R -+ co. According to equation (5), in is subjected to the initial and boundary conditions 
the limit R + 0 the cooling time is proportional to 
R/D3 or RA2, because D and R must be proportional, T=T, att=O (10) 

$ - BAT<< 1. 
aT 
d,=O atx=O (11) 

In this proportionality, AT - TM--T,, and /l is the 2q”L = ti’cP(TR - TJ at x = R (12) 
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0 R 

Fig. 3. The minimal cooldown time at the intersection of the R + 0 and R + cc asymptotes. 

where q” = -k(aT/ax),. The exact form of equation 
(1) for Hagen-Poiseuille flow, 

0’ AP 
iti’ = p,D-- 

12/l L (13) 

allows us to rewrite equation (12) as 

L=$$,(T,-T,). (14) 
R 

The growth of D(t), or the shrinking of the solid, is 
described by 

D(t) = Do + 2 
.r 

R fl[ T/, - T(x, t)] dx (15) 
0 

where Do is the initial (very small) size of D. 
The nondimensionalization of the conduction prob- 

lem statement is based on using L and T,- T, as 
length and temperature change scales : 

Equations (9)-( 11) and (14) become 

ae a28 -=- 
a7 at2 

(16) 

(17) 

(18) 

e=i atr=O 

ae 
ar=O at5=o 

ae -__= 
at Bcs8, at 5 = R/L 

s 

RIL. 
6 = &$-2S (l-e)@ 

0 

(21) 

(22) 

where tIR = (T, - TJ/( TH- TL). The dimensionless 
groups B and S account for the forced how and shrin- 
king characteristics of the solid, 

B = L2CPAP ~ 
24vk 

S = /?(TH- T,). (23) 

Equation (18) was solved using a Crank-Nicolson 
Scheme, which is second order accurate in both time 
and space [12]. Equation (22) was integrated in each 
time step using a trapezoidal rule. We used 201 equi- 
distant nodes to discretize 5 when 0 < 5 < 2. The error 
was checked against a fourth order solution (in space) 
obtained by using Richardson extrapolation based on 
a solution with 201 nodes and another solution with 
401 nodes. 

The shrinking of the solid was simulated by solving 
equation (22) at each time step. After updating the 
size of the domain the nodal points (always equi- 
distant) were relocated. It was assumed that the con- 
traction is very small such that the temperature in 
each nodal point is approximated well by the tem- 
perature at the same node before each update of the 
domain size. Figure 4 shows that the contraction is in 
fact very small relative to R/L. 

An initial thickness of the crack (6,) had to be 
assumed in order to make the heat flux at 5 = R/L 
finite. We found that 6, must be in the range 
lo-’ < 6, < lo-‘. The Fourier number based on the 
node spacing was 10’ < Ar/(A[)’ f 106. The bound- 
ary condition (21) was implemented by requiring 
-aO/a[ = Bh38, when QR > 0, and Q = 0 when 
eR = 0. 

4. NUMERICAL RESULTS 

The behavior of the temperature distribution in the 
solid e(z, 5) is illustrated in Fig. 5. The distribution is 
initially isothermal. The side that is in contact with 
the coolant (5 = 1) drops relatively fast to the inlet 
temperature of the fluid (0 = 0). The temperature in 
the center of the solid piece (0, at 5 = 0) is the last to 
decrease. We used the time decay of 0,, to monitor the 
progress made by the cooldown process. By conven- 
tion, the cooldown time T, was defined when l& 
dropped to 10% of its initial value : 
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Fig. 4. Time evolution of the relative contraction of the solid system of Fig. 2. 

1.4 
_ s = 1o-3 R/L= 1 

= = 1.2- B 1013 6() 1o-5 

0 0.2 0.4 0.6 0.8 1 

5 
Fig. 5. The history of the temperature distribution in the solid during the cooldown process 

&(T,) = 0.1. (24) ing rate qR, center temperature B0 and side tem- 
perature QR decrease monotonically. The channel size 

Figure 6 shows another view of the history of the 6 approaches the plateau associated with the uniform 
cooldown process. The channel opening 6 increases cooling (shrinking) of the solid to 0 = 0 at T + co. 
relatively abruptly, and this causes a jump in the cool- The cooldown process depends on the three dimen- 
ant flow rate and the associated heat removal rate. sionless groups: R/L, B and S. Of primary interest 
The dimensionless heat flux shown with dashed line is is the effect of the geometric parameter R/L, which 
qR = -(&I/c~~)~ = R/L. After the jump in 6, the cool- accounts for the spacing between adjacent cracks. Fig- 
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Fig. 6. The evolution of the channel opening 6, cooling rate q R, center temperature 8,, and channel side 
temperature 19,. 

ure 7 shows the effect of R/L on the calculated cool- 
down time r,. The minimum exhibited by z, confirms 
the behavior anticipated in Fig. 3, however, in the 
numerical results the z, minimum is shallow and less 
pronounced on the side that corresponds to small R/L 
values. The minimal cooldown time is indicated by a 

circle on each of the rC curves of Fig. 7(a)-(c). The 

value 7c,m,, increases as the imposed pressure difference 
(B) decreases [Fig. 7(a)] and as the shrinkage par- 
ameter S decreases [Fig. 7(b)]. 

To solve the time-dependent conduction problem 
numerically it was necessary to assume the existence 

(a) loo) 
1 B = 1012 

R/L 
Fig. 7. The: effect of the crack-to-crack spacing R/L on the cooldown time, and the influence of B, S and 

60. 
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(b) 100 4 

R/L 
(c) 100 -’ 

0.1 

R/L 
Fig. ‘T-continued. 

of a small but finite crack opening (6,) when the 
numerical simulation begins (r = 0). In Figs. 6 and 7 
this starting value was 6, - ~2(10-~), which is about 
four orders of magnitude smaller than the value 
approached by the crack size 6 as z becomes large. 
The choice of & influences the calculated value of 
rc,_. Figure 7(c) shows that the minimal cooldown 
time decreases as 6, increases, and that when 6, is 
greater than 0(10m5) the z, minimum disappears. 

The trends exhibited by r, in Fig. 7(at(c) can be 

summarized by correlating the minimal cooldown 
time z,,~~” and optimal spacing R&L as functions of 
B, S and 6,,. For example, the results of Fig. 7(a) 
can be used to conclude that Z,,,in is approximately 
proportional to B-' and R,,,/L is proportional to 
B-'j3. The results of Fig. 7(b) show that T=.,,~” x S-’ 
and R&L - Sm213. Finally, Fig. 7(c) shows that 7c,min 

and R,,,IL vary as 6~~ and, respectively, ~5;~“‘. In 
sum, the numerical results presented in this section 
are correlated within 13 % by the expression 
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R w ~ = ‘,,93B-o_4~-0.73~~0 34 
L 

(25) 

and within 6% by 

These trends agree qualitatively with the predictions 
made by intersecting the R + 0 and R + cc asymp- 
totes in Section 2. Transformed in the dimensionless 
notation of equations (23), the R,,, estimate of equa- 
tion (8) reads 

The numerical correlation (25) points in the same 
direction, however, the dependence of R,,,/L on Band 
S is weaker. 

Another prediction based on the analysis of Section 
2 [equation (8)] is 1:hat the minimal cooldown time is 
t C,llll” - R&,/cc, cf. equations (6) or (5). This prediction 
is also written as i:,,,,, - (R,,,/L)‘, and is supported 
qualitatively by th’e numerical correlations (25) and 
(26). Note that by squaring the right side of equation 
(25) we obtain an expression that approaches equa- 
tion (26). Not anticipated by the analysis of Section 2 
is the effect of the ‘crack start-up value ao. This effect 
requires further study, to decide whether it is a feature 
of the cooldown phenomenon or the fingerprint of 
the simplicity of the numerical one-dimensional heat 
conduction model (Fig. 2). 

5. TWO-DIMENSIONAL CRACK PAlTERNS 

The constructal principle of geometric optimization 
of access to equilibrium was demonstrated in Sections 
24 by using the simplest conduction heat transfer 
model : unidirectional time-dependent conduction. 
The same principle can be investigated by using a two- 
dimensional time-dependent conduction model. For 
example, as shown in the two-dimensional example of 
Fig. 1, the cracks would form a pattern (a lattice) in 
the plane perpendicular to the flow direction. The 
challenge is to determine not only the optimal length 
scale of the pattern (i.e., the size of the loop in the 
lattice) but also the optimal shape of the loop (i.e., 
should the loop be elongated, or closer to a square?). 

Theoretical progress on the two-dimensional pat- 
tern can be made based on the conclusions of Section 
2. Specifically, an important geometric implication 
of equation (8) is that the optimal distance between 
consecutive cracks must increase as L’/*. This result is 
relevant to predicting the length scale of the lattice of 
vertical cracks formed in a horizontal two-dimen- 
sional surface cooled (or dried) under the influence 
of external forced convection (e.g. wind). Since the 
direction of the air flow may change locally from time 
to time, and since the material (its graininess) may be 
such that cracks may propagate in all directions, we 
arrive at the problem of cooling a two-dimensional 

terrain (area A, when seen from above) with cracks of 
length L and associated spacings R,,,. 

Figure 8 shows the two extremes in which L may 
find itself in relation to R,,,. First, when L is con- 
siderably shorter than R,,, [Fig. 8(a)] it is impossible 
to cover the area A exclusively with patches of size 
L x Rap,. The reason is that when two cracks of length 
L are joined (at an angle), the elemental area trapped 
between them (the area of order L*) is too small to 
accommodate the amount of ideally cooled solid 
material. 

When L is considerably longer than R,,, [Fig. 8(b)], 
any lattice of cracks will fail to cover the area A 
completely. The reason is that the trapped elemental 
area (-L*) is considerably larger than the amount 
of ideally cooled solid (- LR,,,). Geometrically, this 
means that most of the interior of the element L* 
would require a cooling time that is considerably 
longer than the minimum time determined in equation 
(8). 

In conclusion, to cool the entire solid (A) in the 
fastest way possible is to cover the A cross-section 
with L x Rapt elements in which L - Rapt, i.e., elements 
with ‘round’ shape. Combining L - R,,, with equa- 
tion (8) we find the optimal length scale of the element 
(loop) in the network of cracks that will minimize the 
cooldown time. 

R&t - 
(cc,vk/k,)"* 
U, (/IAQ3’* ’ 

We see once again that, in agreement with obser- 
vations [4], the lattice length scale R,,, decreases as the 
wind speed and the initial excess temperature increase. 

6. CONCLUSION 

The theoretical and numerical work reported in this 
paper provides a deterministic basis for the existence 
of an optimal spacing between cracks in solids that 
simultaneously undergo cooling and volumetric 
shrinking. An optimal crack-to-crack spacing cor- 
responds to the minimal cooldown time. In other 
words, the regularly spaced cracks are the geometric 
pattern that allows the solid to reach its new equi- 
librium state (T = TL, uniform) in the fastest way 
possible. 

This deterministic development is important for 
several reasons. With respect to the natural formation 
of crack patterns in solids, which is a large and mature 
field of study, the work presented in this paper antici- 
pates for the first time that (a) cracks are denser when 
the convective cooling effect is more intense [e.g., U, 
in equation (8)], (b) cracks are denser when the initial 
departure from equilibrium is larger [e.g., ATin equa- 
tion (8)], and (c) the loops are close to round (or 
square) in two-dimensional lattices of cracks. 

These conclusions extend constructal theory to a 
new class of naturally organized systems: natural, 
macroscopic crack patterns in solids. There is an 
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A 

(4 (b) 
Fig. 8. The fastest cooling of a two-dimensional solid that contracts volumetrically, or how to cover 

completely an area (A) with a lattice of cracks (L) and solid material of optimal thickness (R,,,). 

important technological aspect to this new work, 
which becomes visible if we compare the optimized 
crack distribution of a cooling solid such as Fig. 2 with 
the optimized internal architecture of an electronic 
package. The optimized unit Rx L of Fig. 2 is an 
‘elemental system’ in the sense of constructal theory 
[l] : volumetric diffusion is balanced optimally by 
channelled flow (streams), in such a way that the 
diffusion mechanism touches every point of the 
volume. In other words, two heat-flow regimes are 
needed (diffusion and streams), and the one with the 
highest resistance (diffusion) is assigned to the scales 
that are smaller than the smallest channel. Artificial 
systems (e.g., electronic packages) owe their internal 
geometric form to the same physics principle as natu- 
ral systems (e.g., cracked solids) : the geometric min- 
imization of resistance to flow subject to overall con- 
straints (size, current). Additional applications of 
constructal theory are reviewed in a new book [ 131. 

Acknowledgements-This work was sponsored by the 
National Science Foundation (U.S.A.) and the Ministry of 
Education (Japan). 

REFERENCES 

1. Bejan, A., Constructal-theory network of conducting 
paths for cooling a heat generating volume. International 
Journal of Heat and Mass Transfer, 1997, 40, 799-816. 

2. Ledezma, G. A., Bejan, A. and Errera, M. R., Con- 
structal tree networks for heat transfer. Journal of 
Applied Physics, 1997,82(l), 89-100. 

3. Kadanoff, L. P., Fractals : where’s the physics? Physics 
Today, 67 February 1986. 

4. Walker, J., Cracks in a surface look intricately random 
but actually develop rather systematically. ScienttjYc 
American, 1986, 255204-209. 

5. Meakin, P., Models for material failure and defor- 
mation. Science, 1991,252, 226234. 

6. Yakobson, B. I., Morphology and rate of fracture in 
chemical decomposition of solids. Physical Review 
Letters, 1991, 159G-1593. 

7. Bejan, A. and Sciubba, E., The optimal spacing of par- 
allel plates cooled by forced convection. International 
Journal of Heat and Mass Transfer, 1992,35,325993264. 

8. Anand, N. K., Kim, S. H. and Fletcher, L. S., The 
effect of plate spacing on free convection between heated 
parallel plates. Journal of Heat Transfer, 1992,114,515~ 
518. 

9. Petrescu, S., Comments on the optimal spacing of par- 
allel plates cooled by forced convection, International 
Journal of Heat and Mass Transfer, 1994,37, 1283. 

10. Lim, J. S., Bejan, A. and Kim, J. H., Thermodynamic 
optimization of phase-change energy storage using two 
or more materials. Journal of Energy Research Tech- 
nology, 1992, 114, 84-90. 

11. Bejan, A., Heat Tramfir. Wiley, New York, 1993. 
12. Fletcher, C. A. J., Computational Techniques for Fluid 

Dynamics, Vol. 1. Springer-Verlag, Berlin, 199 1. 
13. Bejan, A., Advanced Engineering Thermodynamics, 2nd 

edn. Wiley, New York, 1997. 


